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Varieties and their Hodge numbers

Let X be a smooth projective variety over C. Then its cohomology
groups have a Hodge decomposition:

Hw (X ,C) =
w⊕

p=0

Hp,w−p.

A typical first step in understanding a variety X is to understand its
Hodge numbers hp,q := dimC(Hp,q). It is convenient to think of these
as forming a Hodge diamond. If dimC(X ) = 3, this diamond is:
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Familiar varieties and their Hodge diamonds
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In the sequel, we consider only varieties X defined over Q and write
X = X (C).



Motivic decomposition

Having in mind connections with automorphic representations and
L-functions, we henceforth work in the category M(Q,Q) of motives
defined over Q with coefficients in Q. For X as before, its
cohomology Hw (X ,Q) is an object in M(Q,Q) having a Hodge
vector

(hw ,0, hw−1,1, . . . , h1,w−1, h0,w ).

But Hw (X ,Q) may decompose in M(Q,Q), giving a decomposition
of its Hodge vector.

Example A: X is a genus g curve with Jacobian factoring into abelian
varieties of dimension g1 and g2:

H1(X ,Q) = M1 ⊕M2, (g , g) = (g1, g1) + (g2, g2).

Example B: X is a K3 surface with Néron-Severi rank ρ:

H2(X ,Q) = Mtrans ⊕Malg, (1, 20, 1) = (1, 20− ρ, 1) + (0, ρ, 0).



Fullness as a non-degeneracy condition

An irreducible motive M ∈M(Q,Q) of weight w and rank n has an
associated compact group G , its Sato-Tate group. If w is odd,
G ⊆ Spn. If w is even, G ⊆ On. We say that M is full if G = Spn,
SOn, or On.

Revisiting three equations considered before, the motives in red are
definitely not full while motives in blue are typically full:

Curve X with factorizing Jacobian: H1(X ,Q) = M1 ⊕M2,

K3 surface X with ρ ≥ 2: H2(X ,Q) = Mtrans ⊕Malg,

Abelian fourfold X : H4(X ,Q) = Λ4H1(X ,Q).

In many situations, the natural expectation is that a given motive M
is full and proving fullness is often easy.



Motives from modular forms with trivial character

Let w be an odd positive integer. Then isomorphism classes of
motives M ∈M(Q,Q) with Hodge vector

(1,

w−1︷ ︸︸ ︷
0, . . . , 0, 1)

are in bijection with normalized Hecke newforms f of modular weight
w + 1 on Γ0(N) with rational coefficients.

Non-full M correspond to forms f with complex multiplication. They
exist for all w .

Full M correspond to forms f without complex multiplication. They
exist for w = 1, 3, 5, 7, . . . , 43, 45, 47, 49, and I conjecture they do
not exist for w ≥ 51.



The Hodge inverse problem

Consider vectors h = (hw ,0, hw−1,1, . . . , h1,w−1, h0,w ) ∈ Zw+1
≥0 with

w ≥ 1, hp,q = hq,p, and (to normalize) hw ,0 ≥ 1.

Problem. Given h, does there exist a full motive M in M(Q,Q)
with Hodge vector h?

Instances:
h Answer

(g , g) Yes, from curves

(1, a, 1) Yes, from K3 surfaces if a ≤ 19

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) Yes, from the Ramanujan form

(1, (fifty 0’s), 1) Likely no.

(4, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 4) ?? at first, but Yes from HGMs

(1, 0, 4, 0, 0, 0, 0, 4, 0, 1) ?? at first, but Yes from HGMs



Two dichotomies

h is called rigid if it has an interior zero and mobile else. From an
algebro-geometric perspective, it should be harder to find motives for
rigid h, because Griffiths traversality prevents them from moving in
families.

Examples all with rank four:

mobile rigid

regular (1, 1, 1, 1) (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

irregular (2, 2) (2, 0, 0, 0, 0, 0, 0, 2)

h is called regular if all its entries are 0’s or 1’s, except perhaps for a
central 2. It is called irregular else. It may be harder to use
representation theory to find motives in M(Q,Q) for irregular h,
because they can’t be isolated by the trace formula.



Formalism of hypergeometric motives (HGMs)

Let n be a positive integer. Let f (x), g(x) ∈ Z[x ] be coprime monic
polynomials of degree n with all roots being roots of unity. Then for
any t ∈ Q− {0, 1} one has a corresponding rank n motive
H(f (x), g(x), t) ∈M(Q,Q).

Example with n = 6:

f (x) = Φ2(x)2Φ8(x) = (x + 1)2(x4 + 1),

g(x) = Φ3(x)2Φ6(x) = (x2 + x + 1)2(x2 − x + 1),

t = 4/3.

Magma allows many computations with HGMs. For example:
H := HypergeometricData([2,2,8],[3,3,6]);

L := LSeries(H,4/3);

EulerFactor(L,7);

1 + 12x − 2 · 72x2 − 59 · 72x3 − 2 · 75x4 + 12 · 76x5 + 79x6



Hodge numbers of HGMs

The Hodge vector of an HGM is independent
of the specialization point t. It is calculated
by how the roots of f (x) and g(x) intertwine
on the unit circle, as illustrated by f (x) =
Φ2(x)2Φ8(x) and g(x) = Φ3(x)2Φ6(x):
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Mobile Hodge vectors in ranks ≤ 24

Proposition. In ranks ≤ 24, every mobile Hodge vector h comes
from a full hypergeometric motive, except the following twelve Hodge
vectors, all orthogonal:

Rank 20 Rank 24

(6, 1, 1, 1, 2, 1, 1, 1, 6) (9, 1, 1, 2, 1, 1, 9)

(7, 1, 1, 1, 1, 2, 1, 1, 1, 1, 7)

Rank 22 (6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6)

(6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6) (5, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5)

(4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4) (4, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4)

(1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1)

Rank 23 (4, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 4)

(1, 21, 1) (4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4)



Ranks ≤ 24, continued

A family H(f (x), g(x)) is called primitive if f (x)/g(x) is not a
function of xk for some k ≥ 2. The Zariski closure of the
monodromy group of the primitive family H(f (x), g(x)) is the entire
symplectic or orthogonal group whenever w ≥ 1. This implies
H(f (x), g(x), t) is full for “almost all” specialization points t.

The proposition is then proved by direct computation. For example,
there are 319,685,444 symplectic families in rank 24, but only
211 = 2048 Hodge vectors. The average fiber size is thus

r24 =
319685444

2048
≈ 156096.

Thus it is not surprising that all fibers are non-empty, as asserted by
the proposition. In fact, the smallest fibers occur above

(5, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 5) and (8, 1, 1, 2, 2, 1, 1, 8)

and have size 34.



Larger ranks

The average number of symplectic rank n families per Hodge vector
is rn, graphed as follows.
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The maximum ratio on the picture is r68 ≈ 5, 810, 819. The last data
point is r300 ≈ 0.000013. So in large ranks, hypergeometric motives
answer the Hodge inverse problem positively only for a vanishingly
small fraction of mobile Hodge vectors.



Rigid solutions from HGMs at t = 1

One can also specialize hypergeometric families at the mild singular
point t = 1.

All Hodge numbers stay the same except:

When w is even, the central Hodge number drops by 1, as in
(2, 3, 1, 3, 2)→ (2, 3, 0, 3, 2).

When w is odd, the two centermost Hodge numbers drop by 1,
as in (2, 3, 1, 1, 3, 2)→ (2, 3, 0, 0, 3, 2).

Fullness fails in the reflexive case f (x) = (−1)ng(−x), because of an
operator inherited from t 7→ 1/t.

Outside the w = 0, the imprimitive, and the reflexive cases, it seems
likely that fullness holds for all but finitely many (f (x), g(x)).
Fullness can be verified for given (f (x), g(x)) by computing two
sufficiently different Euler factors, as on the next slide.



Rigid solutions from HGMs at t = 1, continued

Example:
H:=HypergeometricData([3,3,3,3],[1,1,1,1,1,1,1,1]);

L:=LSeries(H,1);

The Hodge vector is (1, 1, 1, 0, 0, 1, 1, 1) by the above procedure.

f2 := EulerFactor(L,2); f2;

1 + 9x + 39 · 2x2 + 207 · 23x3 + 39 · 28x4 + 9 · 214x5 + 221x6

f5 := EulerFactor(L,2); f5;

1 + 18x − 4416 · 5x2 + 65592 · 53x3− 4416 · 58x4 + 18 · 514x5 + 521x6

Both polynomials are conformally even sextics, so their Galois group
is within Weyl(Sp6) = 23 : S3 of order 48. The biggest their joint
Galois group could be is 48 · 48 = 2304. Indeed:

Order(GaloisGroup(f2*f5));

2304

This suffices to show that H((x2 + x + 1)4, (x − 1)8, 1) is full.



Rigid solutions from reflexive HGMs

For n even, reflexive motives H(f (x), f (−x), 1) decompose as the
sum of two motives in M(Q,Q) of equal or near-equal ranks.

Example. For the rank 14 motive M = H((x − 1)16, (x + 1)16, 1), the
decomposition on Hodge vectors is

(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1) =

(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1) +

(0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0)

For p = 3, 5, the Euler factor det(1− xFrp|M) factors into an
irreducible sextic and an irreducible octic. The nature of the
irreducible factors confirms both fullness and the Hodge numbers.



Rigid solutions from reflexive HGMs

In general, we conjecture that the decomposition h = h1 + h2 has the
“maximal fairness” property:

The numbers hp,q1 − hp,q2 are all in {−1, 0, 1} with the non-zero
differences alternating in sign for p ≥ q.

We also conjecture fullness of each summand outside of a finite
number of exceptions.

This would give positive solutions to the Hodge inverse problem for
infinitely many difficult-looking h. For example, we’d expect that the
two summands of

H(Φ27(x)(x + 1)16,Φ54(x)(x − 1)16, 1)

are both full, with Hodge vectors

(3, 2, 1, 0, 0, 0, 0, 1, 2, 3) and (2, 3, 0, 1, 0, 0, 1, 0, 3, 2).



Selected References

The talk is presently being converted to a paper.

For motives with Hodge number (1, 0, ..., 0, 1):

Newforms with rational coefficients. To appear in the Ramanujan
Journal.

Hodge number formula in:

Roman Fedorov. Variations of Hodge structures for hypergeometric
differential operators and parabolic Higgs bundles. To appear in
International Mathematics Research Notices. Antecedents include
works of Terasoma, Corti, Golyshev, Dettweiler, and Sabbah.

The HGM package in Magma is by Mark Watkins. The L-function
package is by Tim Dokchitser.


